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Abstract. We consider learning and generalization in the multi-interacting feed-fonvard 
network model recently proposed by H-0 Carmesin. With an a priori definition of the net 
architecture, based on symmevies presented by the function to be learnt, we define a generalized 
Hebb rule, extend the maximum stability leaming algorithm to multi-interactions, and obtain 
training and generalization curves. For rules where different orders of synapses are not correlated 
the resub  obtained for the simple perceptron concerning the Hebb rule and through replica 
calculations in the space of couplings may be straightlonvardly adapted to multi-interactions 
through a simple renormalization of the total number of independent couplings. Analytical and 
numerical simulation results are compared and show excellent agreement. 

1. Introduction 

Feed-forward neural networks are made of (usually) binary units-the neurons4isposed 
in ordered layers that can only act on the next layers, with a well defined direction (for a 
recent review see [l]). The idea is to use such systems as intelligent devices that may learn 
a rule from examples; a well known archetype of such devices is the perceptron [2,3]. 

The perceptron consists of two layers of neurons, the input one, containing N neurons 
Si = f l  i = 1,2, . . . , N interacting on a single output neuron SO through the synaptic 
intensities Ji. The function-or rule-pedormed by the perceptron is given by 

N 
So= f - C J i S i  . (1) 1 

When SO is also taken as a binary variable, f is a Boolean function and may be chosen 
such that 

(2) 
where J and S are vectors in an N-dimensional space. Equation (2) defines the binary 
perceptron. when SO is a real variable, other perceptron models are realized depending 
on the choice of f ( x ) ;  f ( x )  = x in (1) defines  the^ linear perceptron model [4] while 
f ( x )  = tanh(px), with ~ p being a parameter, defines the analogue (stochastic units) 
perceptron [4], for instance. 

The game now is to teach the network a given rule through examples by presenting to 
the net a set of P pairs (SO. S) that satisfy the rule and then modifying the synapses Ji 

~~ 

So = sign(J . S) 
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following some dynamics (learning algorithm). The idea is that after the learning session 
the perceptron is able to give correct answers SO to inputs S both belonging or not to 
the set of previously presented examples. It is not always possible to reach a situation 
where the perceptron is able to perfectly perform a task or rule. This may either be due to 
limitations in the learning algorithm or to the inhinsic limitation of perceptrons, that may 
exactly solve exclusively rules that divide the input space by a plane perpendicular to J into 
two regions of different answers SO, that is, linearly separable rules. The performance of a 
perceptron and a learning algorithm is measured by the training and generalization errors as 
functions of the number P of examples that are taught to the net These curves, defined as 
the average fraction number of wrong answers to inputs respectively in and out of the set 
of examples, are obtained analytically using statistical mechanics techniques and through 
numerical simulations (see [l] and references therein). 

Very recently Camesin [5] proposed a multineuron interacting feed-forward network 
model where the interactions may involve more than one input neuron. This assumption 
allows feed-forward neural networks to solve rules that are not linearly separable; 
generalization and learning from examples in these nets are then pertinent items to be 
investigated. As we shall see in what follows, the analytical results available in the literature 
concerning the perceptron may be adapted to the multineuron interacting model in some 
situations. In the following section we analyse the model from a novel point of view and 
propose learning prescriptions for multi-interacting nets. In section 3 we show that the 
resultin,. model may be solved by conveniently adapting the available results for binary 
perceptrons to an extended configuration space and we present general analytical results for 
the case where the different orders of couplings are unconelated. In section 4 we discuss 
the numerical simulations and compare them with analytical outcomes. Finally, in section 
5 we conclude. 

2. The model 

Consider a delta function defined as 

that returns the value 1 if S = E and zero otherwise. Consider also a real function F 
of binary vectors S = (Si, Sz, . . . , &), with Si = il. We define a feed-forward neural 
network by 

where f ( x )  = sign@), f ( x )  = x ,  and f ( x )  = tanh(@x), with @ being a parameter, are, 
respectively, the binary, linear and analogue versions of feed-forward networks. Using 
equation (31, any function F ( S )  may be written as 

where the sum over ( E }  stands for the sum over all ZN input configurations. Should the 
sum be restricted to a smaller set of input states, equation (5 )  would return zero for every 
state outside the summing set. As remarked by Carmesin, this expansion does not compress 
information, that is, after summing over P states, the function cannot ‘guess’ the right value 
for a (P + 1)th state, regardless of how large P is. 
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However, when multilinear perceptrons are being considered, a convenient kind of 
information compression can be provided to the net in the form of a previously defined 
architecture, as we shall see in what follows. We first rewrite equation (5) as 

From the above equation, a threshold Bo may be defined as 

while multilinear synapses of order L may be written as 

The above equations are equivalent to equation (17) of 151 and represent averages of the 
product of F(S) with some multilinear form over all configurations. 

On the other hand, due to symmetries in F(S) some of these multilinear synapses may 
be zero. For example, odd functions F(S) yield all even-order synapses zero or linearly 
separable rules without threshold have all synapses given by equations (8) equal to zero, 
except for the first-order one. 

Here we propose some learning rules and algorithms where only the non-vanishing 
synapses are considered, that is we choose some orders of multilinear forms to be realized 
by the multi-interacting perceptron. This is equivalent to telling the perceptron how to 
compress the information that is being provided through examples, that is it is analogueous 
to deciding between a straight line, spline or any other method to fit a set of points obtained 
in an experiment or numerical simulation. When the function f(x) is invertible (which is 
not the case for the signal function), the expressions for all order synapses are given by 
averages of f T 1 ( & )  = F(E) over all configuration space. In principle, a representative 
(hopefully smaller) set should be enough to yield the correct averages, and all synapses 
could be obtained through averages over these representative sets of examples. In the case 
of non-invertible functions f ,  such as the signal function in the binary case, some learning 
algorithm may be implemented as back propagation [6, 71 or the Hebb learning rule, for 
example. Observe that .7?) = BF’ given by equation (8) corresponds to the Hebb learning 
rule only for the linear perceptron case, for which the transmission function f is the identity. 

We shall restrict ourselves to the case where the transmission function f ( x )  is the signal 
function. We show how to implement other rules that are not linearly separable-that will 
display multi-interacting synapses-and, more importantly, how to deal with them, which 
we do in the next sections. 

Finally, we remark that multineuron interactions have been extensively considered 
showing some success in enhancing the performance of attractor neural network models 
[8,91 and a recent review may be found in [lo]. For feed-forward networks, previous 
multineuron interactiolimodels besides the recent work by Carmesin are the parity machine 
[ l l ,  121 and the sigma-pi units proposed by Rumelhart et al [7]. 
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3. Analytical calculations 

When considering multi-interacting perceptrons the correlation among different orders of 
couplings determines the possible analytical approaches. Reversed wedge or many teacher 
problems, for instance, are easily described by multilinear forms [13], but couplings of 
different orders are correlated. In this paper we focus on multilinear rules with non- 
correlated interactions. We also only consider functions with vanishing thresholds EO, 
that is the average of F(<) over all input space is zero. 

Consider then a multilinear rule, containing non-vanishing multilinear forms of orders 
belonging to the set A = (A,, hz, ... ). The number MA, of different hi interactions is 

such that the total number M of couplings is given by the sum M = MA! + Mhz + . . .. 
When all orders are present, then M = Z N .  

Consider an input configuration S = (SI, SZ, . . . , SN) and the associated multilinear 
form SA, written in a vector notation: 

(10) 
where all and only orders belonging to the set A are present. (In the above expression, we 
explicit the first, second and Nth orders for clarity reasons, but they could be absent). The 
couplings of a multi-interacting net may also be written as A-vectors: 

~~ 

S A  = (SI, SZ,. . . 1 S N ,  SI&, . I . ,  SI&. . . S N )  

and a A-scalar product may be written as 

where only the orders in A are considered. The multi-interacting perceptron containing 
couplings of the orders in A may now be defined as 

so = sign((JAISA)). (13) 
We shall now consider learning and generalization in the multi-interacting perceptron 

defined above. As the simple perceptron, that only solves exactly linearly separable rules, 
the multi-interacting perceptron only solves exactly rules for which the multilinear expansion 
contains exclusively orders belonging to the set A, that is rules that may be written as 

00 = sign((BAlsn)) (14) 
where BA represents a teacher A-vector. 

a function of the average A-scalar product of the net JA and the teacher BA. We define 
Following Opper ef a1 [14] we remark that the generalization rate may be obtained as 

with (JA~JA) = ( B A I B A )  = 1. As in the simple perceptron case, for random inputs S, 
n and y are correlated Gaussian variables with zero mean, unit variance and covariance 
(xy) = R ,  where R is the A-scalar product between the net and the teacher: 
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We remark at this point that the non-correlation between different orders of the teacher 
A-vector is a necessary condition to obtain x and y as Gaussian correlated variables. The 
generalization error cg is then given by the probability that x y  e 0; the calculations are the 
same as for the simple perceptron [14], that is 

c - -COS-' R. (18) 
1 

s - z  
To obtain R analytically we must consider explicitly-the learning strategy; we first 

present the results for the optimal perceptron, obtained through replica calculations over the 
coupling space. As the couplings are assumed to be non-correlated, the number of degrees 
of freedom for the synapses is equal to the total number M of multilinear forms. Thus the 
volume occupied by all JA that produce correct answers SO = uo for all P inputs belonging 
to the set of taught examples [S'], p = 1,2, .  . . , P is given by 

z =  dJns((JnIJn) - l)n.[(JAlsi)signn((Bnlsi)) - K ]  (19) ~1 P 

where K > 0 guarantees a finite basin of attraction, as in the simple perceptron case. As 
usual, an average over different sets of P examples must be performed using the replica 
method the average of In Z over all sets (S') of P examples is obtained from the average 
of Z", in the n + 0 limit, that is 

where ( (Zn))p t  may be written as 

where a runs from 1 to the number of replicas n. This expression is similar to the simple 
perceptron with an important difference: in the A-scalar products there appears terms of 
higher orders that, in principle, are coupled. However, when synapses of different orders 
are not correlated the averages for each term in the different multilinear forms may be 
performed independently and the result is similar to those concerning binary perceptrons, in 
the same way as pointed out by Kohring [I51 for many-neuron interacting neural networks: 
the calculations are the same. After performing the average over the sets of examples and 
integratinz over U', we have 



From now on the problem is completely equivalent to the simple perceptron. We can then 
obtain R as a function of a! in the replica symmetric ansatz and q + 1 from saddle-point 
equations as in Opper et af [14]; the only difference lies in the definition of (Y that must 
now take into account that the number of terms in the A-scalar products is M, that is 

P 
M a!=--. 

Figure 1 shows the anakytical generalization error cg against a! = P / M ,  given by equation 
(18) together with data from numerical simulations using an extension to multi-interactions 
of the maximum stability algorithm, as we shall discuss in the next section. 

We have also considered an extended Hebb learning rule. As we have already stated, 
equations (8) may not be taken as a learning algorithm due to the non-invertibility of the 
signal function. However, this is also me in the simple perceptron model, and a Hebb rule 
may still be assumed where the argument F ( S P )  is replaced by sign((BA1S:)). For every 
order of interaction Ai present in A, we consider the folIowing: 

To obtain the generalization and training error curves we follow the prescription by Vallet 
[16]. First, note that a multilinear perceptron with multi-interactions given by JA returns 
the right answer to an input S if 

sign((BAISA))(JAlSA) > 0 (27) 

where BA is the teacher A-vector, as before. Using equation (26), the above condition may 
be expressed as 

where Sf are the multilinear forms associated with each example S@, fi = 1, . . . , P used 
to build up the connections J A .  Then, the probability that a wrong answer is given to a 
randomly chosen input S, that is the generalization error rate, is given by 

where (z) and U are, respectively, the average value and the standard deviation of zP among 
all possible sets of P examples. Again, the presence of different order terms, in principle, 
implies correlations that should be handled with care. However, the non-correlation between 
different order synapses (that is between components of BA of different orders) allows the 
averages to be taken as in Vallet [ 161 for the simple perceptron with the important difference 
that a! must be renormalized to the multi-synaptic case, as given by equation (U). After 
averaging over all input S, the generalization error reads 
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Similarly, the training error rate, that is the relative number,of wrong answers to questions 
drawn from the set of examples, may also be obtained from the simple perceptron results 
by Vallet [16]: 

Hebb rule 

0.5 
Maximum Stability Algorithm 

I 

0.3 
& 

0.0 - 
0.0 2.0 4.0 

0.0 O.' 0.0 liczzz3 2.0 4.0 ~~ 6.0 

a a 

Figure 1. Generalization error curve obtained through Figure 2. Generalization and training emr C U N ~  
the replica method in the space of couplings (full curve) obtained analytidly (full curve) and numerical 
and numerical simulation data using the maximum simulation dah using the extended Hebb learning mle 
stability algorithm for N = 16 input units, A = (1.31 for N = 20 input units. A = (1,3) (squares) and 
(squares) and A = (1.2, 3) (circles). A = (1, 2,3)  (circles). 

Figure 2 shows the theoretical generalization and training error curves for the generalized 
Hebb xule together with the results for numerical simulations, presenting an excellent 
agreement. 

4. Simnlations 

For comparison with the generalization error curve with 01 = P / M  for the optimal 
perceptron we performed numerical simulations with an extension of the maximum stability 
algorithm [17] to multi-interactions. In  fact, the extension to multi-interactions is quite 
straightforward: in each learning step, the A multilinear form of the worst learnt example is 
subtracted from the A-vector JA. We performed simulations with N = I6 for perceptrons 
with multi-interactions of first and third orders (A = (1,3)) and for first, second and third 
orders (A = (1,2,3)). We considered averages over 10 different samples, that is 10 different 
sets of examples, for each load parameter 01 = P / M .  After the synaptic matrix JA was built 
we measured the relative number of correct answers over 1000 randomly chosen inputs S. 
The simulations were performed on a CRAY Y-MP2E from the National Supercomputing 
Centre of Universidade Federal do Rio Grande do SUI. The results for the generalization 
error curve are given in figure 1. Clearly, the good agreement with the analytical data 
shows that larger uets are not required and demonstrates the absence of correlation among 
the synapses. 

The Hebb rule simulations were performed using equation (26) to build up the synaptic 
strength from the examples. The simulation conditions considered were: input layers 
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containing 20 units, A = (1.3) and {1,2, 31, 20 samples with 1000 questions each, for 
different load parameters 01. In this case we measured the generalization and the training 
errors. The agreement with theoretical data is evident and is shown in figure 2. 

5. Conclusion 

With the help of multi-interacting feed-forward neural networks, the problem of devising a 
machine capable of learning a Boolean function from examples may be stated as follows. 
Any Boolean function So of N Boolean variables S can be expanded in multilinear forms. 
The different multilinear terms may be mapped onto multi-interaction couplings between 
one or more input units and the output unit of a multi-interacting percephon. Depending on 
the symmetries present in the function to be learnt, many multilinear terms are zero and this 
information should be translated in an a priori assumption about the orders of interaction 
present in the architecture of the multiinteracting perceptron. A given architecture of the net 
is equivalent to a definite way of compressing the relevant information contained in the data 
(examples) supplied to the net. As an example, the information contained in examples of 
a linearly separable rule are conveniently compressed by the simple perceptron architecture 
because every other order in the multilinear expansion of such rules is zero. 

Hence the rules should be classified by the set A containing the non-vanishing orders 
of the multilinear expansion. When then is no correlation for any coupling between 
the input and output units, regardless of their order, the results concerning learning and 
generalization obtained for the simple perceptron may be adapted to the multi-interacting 
perceptron through a simple renormalization of the total number of independent synapses, 
that is replacing N for M .  

However, when different orders of interactions are correlated, the number of independent 
couplings may be drastically reduced. In these cases the renormalization of the simple 
perceptron results does not apply and specific calculations both in the space of couplings 
for the optimal perceptron, as well as other learning prescriptions such as the Hebb rule, must 
be performed. These results, together with numerical simulations for diverse multilinear, 
correlated rules such as the reversed wedge or many-teacher problem, will be published 
elsewhere. 
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